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ABSTRACT 1 

Development of an origin-destination (OD) demand matrix is crucial for transit planning. With the 2 

help of automated data, it is possible to estimate a stop-level OD matrix. We propose a novel 3 

method for estimating transit route origin-destination (OD) matrix using Automatic Passenger 4 

Count (APC) data. The method uses 𝑙0 norm regularizer, which leverages the sparsity in the actual 5 

OD matrix. The technique is popularly known as compressed sensing (CS). We also discuss the 6 

mathematical properties of the proposed optimization program and the complexity of solving it. 7 

We use simulation to assess the accuracy and efficiency of the method and found that the proposed 8 

method is able to recover the actual matrix within small errors. With increased sparsity in the 9 

actual OD matrix, the solution gets closer to the actual value of the matrix. The method was found 10 

to perform more efficiently even for different demand patterns. We also present a real numerical 11 

example of OD estimation of A Line BRT route in Twin Cities, MN. 12 

 13 

 14 

Keywords: rigin-desintion (OD) matrix, transit, compressed sensing, Lasso, sparsity, 𝑙0 norm, 𝑙1 15 

norm, Automatic Passenger Count (APC), automated data 16 
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INTRODUCTION AND LITERATURE REVIEW 1 

To understand the travel pattern of passengers, transit agencies require an origin-destination (OD) 2 

flow matrix of the passengers. This is a fundamental element of interest that helps in designing 3 

new routes and schedules, understanding and forecasting demand on transit network, adjusting 4 

marketing strategy, etc. The transit OD flow matrix is the quantification of the flow of passengers 5 

from one transit stop to another. To evaluate such a matrix, the agencies conduct on-board surveys, 6 

which collect data about passenger boarding and alighting stops, the purpose of travel, etc. These 7 

surveys are expensive to conduct and cover only a small sample of passengers (1). However, with 8 

recent advancement in automated data collection systems (ADCS), it is possible to mine the full 9 

origin-destination matrix. The automated data such as Automatic Fare Collection (AFC) and 10 

Automatic Passenger Count (APC) data are a rich source about information of passenger travel 11 

over a continuous period, making it possible to estimate OD matrix more frequently.  12 

 13 

The OD estimation problem has attracted the attention of many researchers over several decades. 14 

More recently, the use of automated data such as AFC, APC, or cell phone data has become 15 

popular for OD estimation. For example, the AFC data can be used to estimate a stop level OD 16 

matrix. It usually lacks the passenger alighting stop, which can be inferred using a trip-chaining 17 

algorithm based on several assumptions (2–5). The inference rate depends on the quality of data, 18 

the percentage of passengers using the smart card, and assumptions involved in the trip-chaining 19 

algorithm. On the other hand, APC systems collect information about the number of passenger 20 

boarding and alighting at each transit stop. OD estimation using the boarding and the alighting 21 

counts is a classic problem, which is hard to solve. The problem requires solving an 22 

underdetermined system of equations, in which case the number of unknowns to solve is far more 23 

than the number of equations available. Usually, multiple solutions are possible for this problem, 24 

which satisfy the given equations. Other information is supplemented to produce the accurate OD 25 

flows. To deal with this underdetermined problem, various methods have been proposed in the 26 

literature, which is summarized below: 27 

 28 

1. Iterative Proportional Fitting (IPF) method: This is a popular and easy to apply method to 29 

evaluate the OD matrix using count data (6, 7). The method starts with a base matrix, 30 

which is improved iteratively by multiplying the columns and rows of the matrix by a 31 

constant factor. The base matrix can be taken as a null matrix or any other seed matrix. 32 

Mishalani et al. found that using onboard survey data as a base matrix gives more accurate 33 

results than using null base matrix  (8). The method has several issues such as the problem 34 

of non-structural zeros (6),  due to which a zero entry remains zero in every iteration. The 35 

method also fails to converge if the number of zero entries become large in the matrix.  36 

2. Bayesian inference methods: These methods use Bayesian approach to evaluate an OD 37 

matrix by formulating the problem as a partially observed Markov chain and utilizing prior 38 

information along with current observations of count data (9–12).  39 

3. Optimization methods: As there are multiple solutions possible for this system of 40 

equations, these methods try to find the one, which optimizes an objective. The objective 41 

can be maximizing entropy (13) or the likelihood (14–16) function. With isotropic 42 

Gaussian noise, the maximum likelihood estimation turns into a classic least squares 43 

problem.  44 
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Another class of optimization methods consider above objectives along with a regularizer. The 1 

regularizer helps to mitigate the ill-posedness of the system of equations. The regularization can be 2 

included as a least square term between the unknown and a prior OD matrix obtained from a 3 

survey or from domain knowledge. This technique is quite popular in the literature. For example, 4 

Cascetta and Nguyen minimized generalized least square objective with a prior matrix (7), Van 5 

Zuylen and Willumsen maximized the relative entropy or minimized the Kullback-Leibler (KL) 6 

divergence of unobserved and observed flow distributions (13). This approach tries to force the 7 

solution, as close to the prior matrix as possible which may result in poor estimates if the prior or 8 

seed matrix used is not reliable.   9 

 10 

In this research, we evaluate the transit route OD matrix using APC data. The problem is the 11 

estimation of the flow of passengers between stops for a single trip. The route matrix problem has 12 

a special structure that provides an extra piece of information to reduce the ill-posedness of the 13 

system of equations.  The estimation requires the selection of the correct estimate out of the 14 

multiple solutions. We use an estimation method that encourages the sparse OD matrix using 𝑙0 15 

norm regularizer. This helps in mitigating the ill-posedness of the system and offers interpretability 16 

(17) as there is only a subset of the origin-destination pairs which carries flow in an actual OD 17 

matrix. The method is popularly known as compressed sensing (18) and can also be viewed as 18 

least absolute shrinkage and selection operator (LASSO) regression proposed by (19).  19 

 20 

The rest of the paper is structured as follows. Section 2 presents the methodology for sparse matrix 21 

recovery followed by results of the experiments in section 3, then limitations of this research and 22 

directions for future research are discussed in section 4. Finally, conclusions are presented in 23 

section 5.  24 

 25 

 26 

 27 

 28 

 29 
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METHODOLOGY 1 

In this section, we present the method to estimate the route level OD matrix using boarding and 2 

alighting counts available from APC data. We use the following notations throughout the paper 3 

(Table 1):  4 

 5 

 6 

 7 

 8 

 9 

Let 𝑁 be the set of stops along a transit route at which passenger board or alight. We consider the 10 

boarding and alighting in a single direction. Let 𝑏𝑖 and 𝑎𝑖 be the observed number of passengers 11 

who board and alight at stop 𝑖 = (1, 2, …, |N|) respectively.  The values of 𝑏𝑖 and 𝑎𝑖 are obtained 12 

from APC data. Let 𝑋 = {𝑥𝑖𝑗} ∈  𝑅|𝑁|×|𝑁| be the origin-destination flow matrix, where 𝑥𝑖𝑗 denotes 13 

the number of passengers boarding at stop 𝑖 and alighting at stop 𝑗. The overall setup is shown in 14 

Figure 1. Let 𝑥 ∈  𝑅|𝑁|2
 be the vectorized form of matrix 𝑋 i.e., 𝑥 = 𝑉𝑒𝑐𝑡(𝑋). The estimation 15 

procedure is subject to the following constraints, which are taken from (11, 20). 16 

 17 

 18 

 19 

 20 

 21 

Constraints 22 

1. If we sum the values of 𝑥𝑖𝑗 along all the columns, then we get the total number of passengers 23 

boarding at stop 𝑖 i.e. 𝑏𝑖,  24 

∑ 𝑥𝑖𝑗
|𝑁|
𝑗=1 =  𝑏𝑖 ∀ 𝑖 ∈ 𝑁      (1) 25 

2. Similarly, if we sum the values of 𝑥𝑖𝑗  along all the rows, then we get the total number of 26 

passengers alighting at stop 𝑗, i.e.,  𝑎𝑗 27 

∑ 𝑥𝑖𝑗
|𝑁|
𝑖=1 =  𝑎𝑗  ∀ 𝑗 ∈ 𝑁     (2) 28 

 29 

3. The total number of boarding at all the stops should be equal to the total number of alighting.  30 

∑ 𝑏𝑗
|𝑁|
𝑗=1 = ∑ 𝑎𝑖

|𝑁|
𝑖=1      (3) 31 

 32 

4. The number of boarding and alighting at the same stop is zero, which means the diagonal 33 

elements of the matrix 𝑋 should be equal to zero.  34 

 35 

𝑥𝑖𝑖 =  0 ∀ 𝑖 ∈ 𝑁       (4) 36 

 37 

5. As the transit vehicle runs in a single direction, a passenger boarding at one stop cannot alight at 38 

the previous stops that vehicle has already visited. This means,  39 

  40 

𝑥𝑖𝑗 =  0  ∀ 𝑖 > 𝑗,    ∀ 𝑖, 𝑗 ∈ 𝑁     (5) 41 

 42 

7. The total load on a link between two stops is equal to the passengers boarding between those 43 

stops. 44 

∑ (𝑏𝑖
𝑘
𝑖=1 − 𝑎𝑖) =  ∑ ∑ 𝑥𝑖𝑗

𝑛
𝑗=𝑘+1

𝑘
𝑖=1      (6) 45 
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 1 

By imposing these constraints, the structure of the matrix will look as in Figure 2.  2 

 3 

 4 

 5 

 6 

 7 

 8 

We can express the linear constraints (1)-(6), in form of a matrix as 9 

 10 

𝒜(𝑥) = 𝑏         (7) 11 

 12 

Where, 𝒜 ∈  𝑅𝑝 × |𝑁|2
 is the linear map (which is a matrix in this case) for 𝑝  number of 13 

constraints and 𝑏 ∈  𝑅𝑝  represents the constant vector for these constraints. In the following 14 

subsections, we describe the proposed solution to the given problem.  15 

 16 

Transit route OD estimation using compressed sensing technique 17 

As discussed, (7) is usually an ill posed problem for which one can expect multiple solutions. A 18 

generic regularizer can help in mitigating the ill posedness of the problem. One such regularizer is 19 

the generalized least square of the difference between the unkown and a prior matrix obtained from 20 

the survey data. The quality of the solution depends upon the availability of a good prior matrix as 21 

the optimal solution is forced to be as close as possible to the prior matrix. We can use other 22 

regularizers based on the domain knowledge on the space of the plausible OD flows in the network 23 

(17). To use one such regularizer, we make the following assumption: 24 

 25 

Assumption The planted OD matrix in the set of linear equations is sparse which means that the 26 

flow between many of the OD pairs should be equal to zero. The observed flow is only due to a 27 

small subset of  
𝑁(𝑁−1)

2
 pairs. 28 

 29 

The intuition behind the above assumption is that there is a large number of OD pairs for a transit 30 

route, but the travel happens only along few pairs. For example, during the morning peak hours, 31 

there are only a few popular origin stops such as residential locations and few destination stops 32 

such as central business areas, park and rides, etc. Moreover, it is unlikely that passengers boarding 33 

at initial stops of the route will alight at all the following stops. This makes the flow between most 34 

of the OD pairs equal to zero. This is opposite to the solution evaluated using entropy 35 

maximization, which tries to achieve the solution, as uniform as possible to minimize the errors. 36 

The sparsity as a regularizer has been used before for highway network OD estimation and has 37 

found promising results (17, 21–24). For example, (17) leverages sparsity in highway OD matrix 38 

to estimate a set of suitable traffic analysis zones (TAZs) and use those zones to evaluate an OD 39 

matrix. The method proposed in (17) has a bi-level structure with sparse OD estimation on upper 40 

level and traffic assignment using user equilibrium at lower level. The use of non-negativity 41 

constraints for improving the solution is also emphasized. This paper uses similar optimization for 42 

the transit route OD estimation problem, which has a special structure as we get an extra set of 43 

constraints because of transit movement in one direction. We also describe the conditions under 44 

which sparse recovery is possible.  45 

 46 

 47 
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Using sparsity as the regularizer for OD estimation 1 

To achieve the sparsity in the solution, we minimize the number of non-zero entries in the solution, 2 

which can be done by minimizing 𝑙0 norm of the vector 𝑥. We can state the problem as the 3 

minimization of 𝑙0 norm of 𝑥 subject to linear constraints. The optimization formulation is given 4 

below: 5 

 6 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ‖𝑥‖0 7 

𝑠. 𝑡.       𝒜(𝑥) = 𝑏 8 

                  𝑥 ≥ 0     (8) 9 

 10 

Where, ‖𝑥‖0 is the 𝑙0 norm of vector 𝑥, which is defined as 𝑙𝑖𝑚𝑝→0  ∑ |𝑥𝑗|
𝑝

𝑗 . The non-negativity 11 

should not be dropped from (8) as it helps to mitigate the ill-posedness of the problem (17). Using 12 

Lagrangian relaxation, the linear constraints can be included in the objective function as a least 13 

square term and formulated as following:  14 

 15 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑥 ≥0   ‖𝒜(𝑥) −  𝑏‖2 +  𝜇‖𝑥‖0        (9) 16 

 17 

The problem (9) tries to find the sparse vector 𝑥 planted in the given ill-posed system of linear 18 

equations. The regularization parameter 𝜇 controls the sparsity of the vector and requires tuning to 19 

get the best results. A higher value of the 𝜇 will impose more sparsity in the solution. When 𝜇 = 0, 20 

(9) reduces to an ordinary least squares problem. The optimization program (9) is useful for the 21 

APC data when the total number of boarding and alighting do not match as the least square term 22 

will try to find a solution which best explains the observed flows. This happens quite often in the 23 

APC systems due to the errors in recording data. The given problem (9) is an NP-hard as the 24 

minimization of 𝑙0 norm cannot be done in polynomial time. Recent work in compressed sensing 25 

has proposed a tightest convex relaxation of the 𝑙0 norm which is 𝑙1  norm (25). The problem (9) 26 

can be restated as follows.  27 

 28 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑥 ≥0    ‖𝒜(𝑥) − 𝑏‖2 +  𝜇‖𝑥‖1                  (10) 29 

 30 

where, 𝜇‖𝑥‖1 =  ∑ |𝑥𝑖|𝑖 . (10) is a convex optimization program as the absolute value of 𝑥𝑖 can be 31 

written as a set of linear inequality constraints. The use of 𝑙1 norm is better than the 𝑙2 norm (also 32 

called ridge regression) to achieve sparsity. This is because the 𝑙1 norm ball has corner points that 33 

can intersect the given plane at the sparsest solutions, unlike 𝑙2 norm ball. The problem can also be 34 

viewed as least absolute shrinkage and selection operator (or Lasso regression) proposed by (19) 35 

as given a set of observations, we try to estimate the coefficients which satisfies the given 36 

equations. However, there is a key difference between compressed sensing and LASSO. The 37 

former provides conditions under which the linear map 𝒜 is nicely behaved and the uniqueness of 38 

the solution can be proved (these conditions are discussed in the next subsection). In other words, 39 

we can design 𝒜 in such a way that it can guarantee to recover the actual solution. On the other 40 

hand, LASSO is a regression method in which we have no control over the data and we try to find 41 

the best coefficients which are sparse and satisfy the equations obtained from data. We can also 42 

interpret these estimates as a Bayesian posterior mode estimate when the regression parameters 43 

have independent Laplace (i.e., double exponential) priors (26). Now the natural question which 44 

arises is that when does solving (10) gives a good solution to (9). In other words, what natural 45 

conditions can be applied on linear map 𝒜 so that we can say that the solution is unique.  Candès 46 

and Tao, 2005 proposed the idea of restricted isometry property (RIP) of the matrices, which states 47 
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that if 𝒜 satisfies the isometry property, then there exists a unique solution to the problem (10) 1 

which is equal to the solution of (9).  2 

 3 

Restricted Isometry Property (RIP) 4 

The linear map 𝒜 has RIP with constants 𝑘 and δ𝑘 , if ∀ ‖𝑥‖0  ≤  𝑘, 𝒜 behaves almost as an 5 

isometry in following sense i.e. 𝑙2 norm of 𝒜(𝑥) is close to the 𝑙2 norm of vector 𝑥: 6 

 7 

             (1 − δ𝑘)‖𝑥‖2
2 ≤ ‖𝒜(𝑥)‖2

2 ≤ (1 + δ𝑘)‖𝑥‖2
2   (11) 8 

 9 

 10 

RIP matrices are extremely common in practice and most of the random matrices satisfy this 11 

property. Based on the above definition, a theorem is proposed by Candès and Tao, 2005 (25).  12 

 13 

Theorem (Candès and Tao, 2005 (25))  14 

If 𝒜(𝑥) = 𝑏 and 𝑏 is constructed using a sparse solution with ‖𝑥‖0  ≤  𝑘, and the RIP condition is 15 

satisfied with constants δ2k and δ3k , satisfying δ2𝑘  +  δ3𝑘  <  1, then (10) can obtain a unique 16 

solution to the problem (9) with as few as 𝒪 (𝑘𝑙𝑜𝑔 (
|𝑁|2

𝑘
))  number of equations  17 

 18 

As the passenger flow cannot be negative, we can replace the 𝑙1 norm with sum of the components 19 

of vector 𝑥 , which allow us to use the gradient-based approaches to solve the optimization 20 

program (10)  efficiently. If we have some idea about the number of non-zero entries (say less than 21 

𝑘), we can constraint the solution as follows: 22 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝒜(𝑥) − 𝑏‖2 23 

        𝑠. 𝑡.      ‖𝑥‖0  ≤  𝑘  24 

         𝑥 ≥ 0     (12) 25 

We use the optimization program (8) with 𝑙1 norm for solving the transit route OD estimation 26 

problem. The problem is convex and can be solved easily using a standard convex optimization 27 

solver such as CVX (27). We could also employ an iterative algorithm proposed in (19) to evaluate 28 

a sparse solution but the algorithm does not gurantee convergence to a unique solution. In the next 29 

section, we present numerical examples to show the application of the porposed method.  30 

 31 

 32 

RESULTS 33 

In this section, we present two numerical examples of OD estimation using the proposed 34 

methodology. First, simulation is used to assess the consistency and accuracy of the estimation 35 

method. Second, the OD estimation of a bus route in Twin Cities, MN is presented.  36 

 37 

OD estimation using simulation 38 

We use the APC data provided by Metro Transit, which is a primary transit service provider in the 39 

Twin Cities, MN area offering an integrated network of buses, light rail, bus rapid transit, and a 40 

commuter train. To prepare a synthetic OD matrix, we make some assumptions on the probability 41 

distribution of arrival of the passengers on different stops. We consider 10 stops along a transit 42 

route to facilitate the presentation of results. The passenger arrival at the stop is assumed to follow 43 

a Poisson distribution. 44 

 45 

       𝑏𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑘) ∀𝑖     (13) 46 
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 1 

where 𝑘  is the mean arrival rate at the stop and 𝑏𝑖  is the number of boarding at stop 𝑖 . We 2 

recommend fitting a Poisson distribution to the real data to calculate the value of 𝑘. We calculated 3 

the mean value of arrival rate of the passengers on the A line, an arterial BRT route in Twin Cities, 4 

MN. The mean arrival rate was found to be equal to 0.86 during peak hours, which is quite low. To 5 

assess the significant errors produced by the estimation, we assumed the mean value equal to 15 6 

passengers. Then we set the sparsity level for the O-D matrix. The sparsity level will make the 7 

value of probability of flow from one stop to another stop zero if this probability value is less than 8 

the threshold sparsity level. This is done to create sparsity in the matrix and to test whether the 9 

method works more efficiently when the sparsity is high. We then assign the flow from one stop to 10 

others by assuming a multinomial distribution i.e. 11 

 12 

𝑥𝑖𝑗~𝑀𝑁𝐿(𝑏𝑖, 𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖|𝑁|)    (14) 13 

 14 

Where 𝑝𝑖𝑗 is the probability of movement from stop 𝑖  to stop 𝑗. We then make the diagonal and 15 

lower triangle of the matrix zero because of the constraints (4-5). To calculate the boarding and 16 

alighting flows for O-D estimation, we sum the rows and columns of the simulated matrix. After 17 

that, we set up an optimization model using the python API of CVX (27). To avoid choosing the 18 

value of 𝜇 in optimization program (10), we solved the program (8) with 𝑙1 norm. However, we 19 

recommend using the optimization program (10) when the sum of boarding and alighting count do 20 

not match in the APC data, which happens because of the errors in data collection. We generated 21 

200 Monte-Carlo samples of OD matrices and calculated the 𝑙2 error between the actual OD 𝑥 and 22 

estimated OD vector 𝑥𝑒𝑠𝑡 as: 23 

 24 

         ‖𝑥 − 𝑥𝑒𝑠𝑡‖2 =  √∑ (𝑥𝑖 − 𝑥𝑒𝑠𝑡,𝑖)
2

𝑖          (15) 25 

 26 

 27 

 28 

 29 

 30 

 31 

Figure 3 shows the histogram of  𝑙2 error in the estimation for each sample. We can observe that 32 

the mean value of the error is 4.99 and with a standard deviation of 1.32. The 95% confidence 33 

interval of the 𝑙2 error was found to be equal to (4.81, 5.19). This shows that the results obtained 34 

from this estimation method are consistent and small. To see how the method performed in 35 

predicting the individual origin-destination pair flow value, we created a box plot for the 36 

estimation error (Figure 4). The proposed method predicted the actual value of the non-zero entries 37 

41.5 % of the time. In case of errors, the method seems to overpredict the values except some of the 38 

O-D pairs such as 0-4, 1-2 and 5-6.  39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 
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 1 

 2 

 3 

Figure 5(a) shows the average load profile of the passengers on the transit route. The width of the 4 

95% confidence interval is small which shows that the method is reliable in estimating demand and 5 

therefore in deciding the adequate frequency to handle the load of the passengers. We can also 6 

observe that the errors in estimating the load of the passengers is also quite small (Figure 5(b)). 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

To understand the effect of sparsity, we solved the problem for several levels of sparsity and 15 

calculated the root mean square error (RMSE) between the estimated and actual OD matrix. Figure 16 

6 shows the RMSE value with respect to the sparsity in the matrix. We can observe that the RMSE 17 

value is reduced with increased sparsity. For example, when the OD matrix has only 10% non-zero 18 

values, the corresponding RMSE value was found to be less than 0.35, which is quite impressive. 19 

This shows that the accuracy of the method is improved when there is more sparsity. Comparing 20 

the results to common least squares solution (Figure 6), the proposed method is able to recover 21 

solutions with lower RMSE value. It can also be observed that when the sparsity is low, the 22 

proposed method is more efficient than least squares as the gap between two lines is high but when 23 

there are a greater number of non-zero entries, the RMSE gap between these two methods reduces. 24 

 25 

 26 
  27 
 28 
 29 

 30 

To see how different demand patterns affect the OD estimation, we performed a similar simulation 31 

for several mean arrival rates(𝑘) of passengers at stops. Figure 7 shows normalized RMSE values 32 

with respect to sparsity in the random matrix for different mean arrival rate. The normalization is 33 

done by simply dividing RMSE by mean arrival rate. The results are presented in separate panels. 34 

We can see that the normalized RMSE decreases with an increase in demand. At 𝑘 = 2, the 35 

normalized RMSE value was found to be almost equal to 1, which is still quite low. At lower 36 

demand, the matrix is already sparse, so we see less effect of sparsity parameter.  37 

 38 

 39 

 40 

 41 

 42 

 43 

OD estimation of A Line BRT route in Twin Cities 44 

We use the APC data from Twin Cities, MN to calculate the origin-destination flow of a route. The 45 

Automatic Passenger Count (APC) data used for this research contains transit trip information, 46 

such as date and time of the operation, routeID, stopID, departure and arrival time, number of 47 

boarding and alighting on each stop, and the geographical coordinates of the stops. We select A 48 

Line, which is a bus rapid transit (BRT) route in Twin Cities for this analysis. It serves 20 stations 49 
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along Snelling Av and 46th St. We select a trip from the data during peak hour. The number of 1 

boarding and alighting at different stops in the northbound direction is shown in Figure 8. We can 2 

observe the popular boarding locations such as 46th street station, 46th & Minnehaha station, and 3 

Snelling & Highland station and alighting stops such as Rosedale transit center, Snelling & 4 

Highland station and Snelling & Clair st. station. We use the optimization program (10) to solve 5 

the given problem with a value of 𝜇 = 0.2. Some recommendations for choosing the value of 𝜇 is 6 

given in (19). 7 

  8 

 9 

 10 

 11 

 12 

 13 

The total ridership of the trip is 16. Because of low ridership, flow along most of the O-D pairs 14 

should be equal to zero. We apply the proposed method to the given data and calculate the 15 

origin-destination flows. Figure 9 shows the origin-destination flows between different O-D pairs. 16 

We can see that the flow occurred only between 11 O-D pairs out of 400 pairs (2.75%). The highest 17 

flow was observed between Snelling & Highland Av and Rosedale Transit Center, which is the last 18 

station along this route. Other popular OD pairs are 46th St and Snelling & St. Clair, Snelling & 19 

Minnehaha and Snelling & Highland Av. Because of the low ridership, the sparse matrix recovery 20 

seems to perform well.  21 

 22 

 23 

 24 

 25 

 26 

 27 

LIMITATIONS AND DISCUSSION 28 

In this section, we discuss the limitations of the proposed method and provide some 29 

recommendations for future research to address these limitations. Various studies use a prior 30 

matrix as a regularizer which can also be included in the proposed framework as follows:  31 

 32 

       𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑥 ≥0   ‖𝒜(𝑥) − 𝑏‖2 +  𝜇1‖𝑥‖0  +   𝜇2‖𝑥 −  𝑥𝑝𝑟𝑖𝑜𝑟‖
2

    (16) 33 

 34 

The choice of parameters  𝜇1 and  𝜇2 will control the weight of different objectives which can be 35 

obtained by observing the error rate for different values of these parameters. Due to lack of the 36 

suitable prior matrix, we have not included any results using this program in this study. Also, no 37 

unique choice of  𝜇1 and  𝜇2 can make this method unattractive to practitioners. 38 

 39 

The problem of OD estimation has been well studied in the literature both in the context of road 40 

and transit network. This is an interesting problem with solution methods using both optimization 41 

and statistical techniques. Depending on the available data, the problem can be formulated as an 42 

underdetermined or overdetermined system of equations. The classic techniques such as entropy 43 

maximization, least squares, etc. produce some good results but may not evaluate the correct 44 

solution as there can be infinitely many or no solutions, which again depends on the quality of data 45 

and the set of equations obtained from the setup. Recent work in the field of compressed sensing 46 

has established that under suitable conditions, we can evaluate a unique sparse solution out of 47 
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given ill-posed system of linear equations. We tried to solve the problem using this approach and 1 

found impressive results but not an exact solution. We also did not prove that the linear mapping 2 

produced by a set of linear equations in this case satisfies the restricted isometry property, which 3 

may be the source of error in our results. The condition is hard to prove and can be a future 4 

research topic. 5 

 6 

The compressed sensing technique can also be used to design a linear map 𝒜 so that we can 7 

guarantee an exact solution to this problem. The future work in this regard should be focused on 8 

how to engineer a system in order to create a linear map 𝒜 so that the recovery of an exact solution 9 

can be guaranteed. This can be done by finding optimal sensor locations on highway and transit 10 

network or integrating different data sources to produce an appropriate 𝒜. 11 

 12 

This research can also be expanded in multiple directions. The method can be used to estimate a 13 

full transit network OD matrix. The problem can be formulated as a bi-level program with sparse 14 

recovery optimization at the upper level and transit assignment (28, 29) at the lower level to 15 

capture route choice behavior in the model. We believe that the network level OD will also be 16 

sparse because it is unlikely that passengers boarding at one stop can alight at all other stops in the 17 

network. The concept can also be extended to matrix sensing which will be helpful in estimating a 18 

time-dependent transit OD matrix. As the boardings and alightings follow a regular pattern during 19 

various hours of the day, data from several days can be used to learn this pattern. This means the 20 

high dimensional data for several days can be used to minimize the rank of the matrix to extract a 21 

regular pattern. This can be done by minimizing the nuclear norm of the matrix, which is a convex 22 

surrogate for the rank of the matrix. The problem is computationally challenging and needs further 23 

attention.  24 

 25 

CONCLUSIONS  26 

In this research, we proposed a method for estimating an origin-destination OD matrix for a transit 27 

route along one direction. The problem can be formulated as an undetermined system of linear 28 

equations. The adopted strategy was to estimate a sparse O-D matrix, using  𝑙0 norm. Using its 29 

convex surrogate 𝑙1 regularizer, the problem can be solved efficiently. The sparsity in the matrix is 30 

generated because there are only a few popular O-D pairs along a transit route where the flow 31 

occurs. We also discussed the complexity of solving the proposed optimization program. The 32 

constraints and sparsity try to force the solution to an actual value. We tested the efficiency of the 33 

estimator using simulation. The errors were found to be bound within a small range. With an 34 

increased level of sparsity in the matrix, the method was able to recover more accurate results. We 35 

also found small errors even for higher demand. For example, the normalized RMSE between 36 

estimated and actual matrix value was found to be at most 0.1. We also presented a numerical 37 

example for A-line BRT route in Twin Cities, MN. Finally, we discussed various limitations and 38 

directions for future research in section 4. Further studies are required to show under which 39 

constraints, the OD linear map satisfy the RIP property. Other statistical methods are also required 40 

to assess the accuracy of the estimation. 41 

 42 
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TABLE 1. Notations  10 

Variable Definition 

N Set of stops/stations along a transit route 

i Index for transit stop 

bi Number of passengers boarding at stop i 
ai Number of passengers alighting at stop i 
X Origin destination flow matrix 

x Vector form of OD matrix X 

‖x‖0 l0 norm of vector x, ‖x‖0  =  limp→0 ∑ |xi|
p

i  

‖x‖1 l1 norm of vector x, ‖x‖1  =  ∑ |xi|i  

A Linear map on a vector  

Z Set of integers 
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FIGURE 1. Transit route origin-destination (OD) flow 13 
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 15 
FIGURE 2. OD matrix for a route in a single direction 16 
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 1 
FIGURE 3.  𝒍𝟐 error between the actual and estimated OD matrix 2 
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 1 
FIGURE 4. Box plot for the errors in estimation of O-D flows 2 
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  1 
FIGURE 5. (a) Average load profile of the transit route. (b) Box plot of error between actual 2 

load and estimated load 3 

 4 

 5 
FIGURE 6.  Root mean square error (RMSE) versus sparsity in OD estimation (Sparsity is 6 

in terms of proportion of non-zero values) 7 
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 1 
FIGURE 7.  Comparing RMSE with sparsity for different mean arrival rates (each panel 2 

represents different mean arrival rate of passengers) 3 
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FIGURE 8. Boarding and alighting count for A Line 1 

 2 

 3 

  4 
FIGURE 9. Origin-Destination flow for A Line, Twin Cities, MN 5 
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